EUV/SXR/X-Ray科研级CCD相机

软X射线CCD相机-内真空1024系列

公司介绍:成立于2008年的greateyes,是以德国柏林洪堡大学的技术为基础,迅速发展成为国际知名的先进探测器生产企业。如今,其科研与工业客户群体已遍布多个国家。greateyes开发、生产并销售高性能科学相机。其作为精确探测器,被广泛应用于成像与谱学应用领域。同时,greateyes公司也生产用于太阳能产业的电致荧光与光致荧光检测系统。产品介绍:greateyes基于独特的平台概念,为真空紫

  • 产地: 德国
  • 型号: 科学级内真空CCD相机 1024 系列
  • 品牌: greateyes

公司介绍:

成立于2008年的greateyes,是以德国柏林洪堡大学的技术为基础,迅速发展成为国际知名的先进探测器生产企业。如今,其科研与工业客户群体已遍布多个国家。

greateyes开发、生产并销售高性能科学相机。其作为精确探测器,被广泛应用于成像与谱学应用领域。同时,greateyes公司也生产用于太阳能产业的电致荧光与光致荧光检测系统。


产品介绍:

greateyes基于独特的平台概念,为真空紫外、极紫外、软X射线和硬X射线成像与谱学客户提供 一系列科学级真空相机。该系列相机由不锈钢或铝制成,提供优异的真空兼容性。单个附加法兰 集成了电子线路和水冷通道。入射光子由CCD传感器直接探测,无需额外的控制器。

所有greateyes 相机结合科学级CCD传感器与超低噪声电子技术,以优化检测弱信号能力。 选 择不同的光谱灵敏度和传感器技术,为您的成像和光谱应用找到最佳解决方案。 

此系列CCD相机采用多级的半导体制冷方式。同时,其具备丰富的功能,包括灵活的像素联用 方式,多种触发以及同步模式,软件可切换增益以及CCD传感器和散热系统的温度监控。


科学级内真空CCD相机 1024 系列

用于VUV,EUV,X-ray成像和谱学


主要特点:

◆ 制冷温度低至-80℃;

◆ 亚像素分辨附件可选;

◆ 超高真空兼容,低至10-8mbar;

◆ 量子效率高达98%;


型号参数:


GE-VAC 1024 1024 seriesGE-VAC 1024 256 seriesGE-VAC 2048 512 series
像素规格(标称)1024 × 10241024 × 2562048 × 512
成像区域(mm2)13.3  × 13.326.6  × 6.727.6  × 6.9
像素尺寸(μm)13 × 1326 × 2613.5 × 13.5
满井容量( keˉ )100 / 120 (DD)500  / 700 (DD)100
读出噪声典型值(eˉ)
@ 500 kHz
@ 1 MHz
@ 3 MHz
FI / BI /DD
5.2
6.6
11.0
 FI             BI           DD
 7.5           9.7         12.1
10.7          12.1       15.1
30.0          32.0       35.0
FI / BI
7.0
8.0
35.0
暗电流 @  -80°C
eˉ/pixel/s
0.0003
0.017(DD)
0.0005
0.08(DD)
0.0003
CCD 传感器类型前照式 (FI),背照式(BI),深度耗尽边缘抑制型 (DD), 增强背照式 (BI UV1)
缺陷等级Grade 0 or grade 1 (标准)


光谱应用:

·  极紫外光刻 

·  软 X 射线光谱 

·  等离子体发射光谱 

·  高次谐波(HHG光)光谱

·  X 射线近边吸收精细结构光谱 

·  共振非弹性 X 射线散射


成像应用:

·  X 射线断层成像 

·  傅立叶变换全息图 

·  X 射线荧光透视成像 

·  相干衍射成像(CDI) 

·   电子叠层衍射(Ptychography)成像 

·  掠入射小角 X 射线散射(GISAXS)


北京众星联恒科技有限公司德国GE_内真空1024系列.datasheet.pdf


文献:

1.  P. Wachulak, M. Duda, A. Bartnik, A. Sarzyński, Ł. Węgrzyński and H. Fiedorowicz, 2-D elemental mapping of an extreme ultraviolet-irradiated PET with a compact near edge X-ray fine structure spectromicroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy, Volume 145, July 2018, Pages 107-114

2.  P. Wachulak, A. Bartnik and H. Fiedorowicz, Optical coherence tomography (OCT) with 2 nm axial resolution using a compact laser plasma soft X-ray source, Nature Scientific Reports, volume 8, Article number: 8494 (2018)

3.  P. Wachulak, M. Duda, A. Bartnik, A. Sarzyński, Ł. Węgrzyński, M. Nowak, A. Jancarek and H. Fiedorowicz, Compact system for near edge X-ray fine structure (NEXAFS) spectroscopy using a laser-plasma light source, Opt. Express 26, 8260-8274 (2018)

4.  A. Jonas, T. Meurer, B. Kanngießer and I. Mantouvalou, Reflection zone plates as highly resolving broadband optics for soft X-ray laboratory spectrometers, Review of Scientific Instruments 89, 026108 (2018)

5.  T. Pflug, J. Wang, M. Olbrich et al., Case study on the dynamics of ultrafast laser heating and ablation of gold thin films by ultrafast pump-probe reflectometry and ellipsometry, Appl. Phys. A (2018) 124: 116

6.  C. Buerhop, S. Wirsching, A. Bemm et al. Evolution of cell cracks in PV modules under field and laboratory conditions. Prog Photovolt Res Appl. 2018;26:261–272

7.  H. Stiel, J. Braenzel, A. Dehlinger, R. Jung, A. Luebcke, M. Regehly, S. Ritter, J. Tuemmler, M. Schnuerer and C. Seim, Soft x-ray nanoscale imaging using highly brilliant laboratory sources and new detector concepts, Proc. SPIE 10243, X-ray Lasers and Coherent X-ray Sources: Development and Applications, 1024309 (17 May 2017)

8.  M. F. Nawaz, M. Nevrkla, A. Jancarek, A. Torrisi, T. Parkman, J. Turnova, L. Stolcova, M. Vrbova, J. Limpouch, L. Pina and P. Wachulak, Table-top water-window soft X-ray microscope using a Z-pinching capillary discharge source, JINST, 2016, Vol. 11 PO7002

9.  I. Mantouvalou, K. Witte, W. Martyanov, A. Jonas, D. Grötzsch, C. Streeck, H. Löchel, I. Rudolph, A. Erko, H. Stiel and B. Kanngießer, Single shot near edge x-ray absorption fine structure spectroscopy in the laboratory, Appl. Phys. Lett. 108, 201106 (2016)

10.  S. Fazinić, I. Božičević Mihalić, T. Tadić, D. Cosic, M. Jakšić, D. Mudronja, Wavelength dispersive µPIXE setup for the ion microprobe, Nucl. Instr. Meth. Phys. Res. Sec. B, 2015, Vol. 363, pages 61-65   

11.  A. Hafner, L. Anklamm, A. Firsov, A. Firsov, H. Löchel, A. Sokolov, R. Gubzhokov, and A. Erko, Reflection zone plate wavelength-dispersive spectrometer for ultra-light elements measurements, Opt. Express, 2015, Vol. 23, No. 23:29476-29483

12.  P. W. Wachulak, A. Torrisi, A. Bartnik, D. Adjei, J. Kostecki, L. Wegrzynski, R. Jarocki, M. Szczurek, H. Fiedorowicz, Desktop water window microscope using a double‑stream gas puff target source, Applied Physics B, 2015, 118:573–578

13.  I. Mantouvalou, K. Witte, D. Grötzsch, M. Neitzel, S. Günther, J. Baumann, R. Jung, H. Stiehl, B. Kanngießer, W. Sandner, High average power, highly brilliant laser-produced laser plasma source for soft X-ray spectroscopy, Review of Scientific Instruments, Vol. 86, Issue 3, 2015 

14.  T. Krähling, A. Michels,S. Geisler, S. Florek, J. Franzke, Investigations into Modeling and Further Estimation of Detection Limits of the Liquid Electrode Dielectric Barrier Discharge, Analytical Chemistry, 2014, 86(12), 5822-8


首页
产品
新闻
联系