EUV/SXR/X-Ray科研级CCD相机

软X射线CCD相机-ALEX光谱系列

公司介绍:成立于2008年的greateyes,是以德国柏林洪堡大学的技术为基础,迅速发展成为国际知名的先进探测器生产企业。如今,其科研与工业客户群体已遍布多个国家。greateyes开发、生产并销售高性能科学相机。其作为精确探测器,被广泛应用于成像与谱学应用领域。同时,greateyes公司也生产用于太阳能产业的电致荧光与光致荧光检测系统。产品介绍:出身于柏林的ALEX是德国greateyes公

  • 产地: 德国
  • 型号: ALEXs
  • 品牌: greateyes

公司介绍:

成立于2008年的greateyes,是以德国柏林洪堡大学的技术为基础,迅速发展成为国际知名的先进探测器生产企业。如今,其科研与工业客户群体已遍布多个国家。

greateyes开发、生产并销售高性能科学相机。其作为精确探测器,被广泛应用于成像与谱学应用领域。同时,greateyes公司也生产用于太阳能产业的电致荧光与光致荧光检测系统。


产品介绍:

出身于柏林的ALEX是德国greateyes公司最新研发,应用于极紫外,真 空紫外和X射线能段的光谱及影像相机。

ALEX集成了目前最前沿的低噪 声电子系统和超低温制冷技术,同时保持了紧凑小巧的设计。全新的设计 允许从50 kHz至5 MHz灵活地选择所需读出速度。18-bit 的模数转换能够利用CCD传感器的全动态范围,以达到更好表现和更高的信噪比。为 匹配不同应用的需求,该相机包括多种类型的传感器可供用户选择。同时 ALEX的低噪声使之成为极弱信号条件下所需的理想相机,它将给您的 光谱学和影像研究带来前所未有的可能性。


ALEX 光谱系列

用于VUV,EUV,X-ray谱学


优势:

◆ 制冷温度低至-100℃;

◆ GigE & USB3.0 双数据接口;

◆ 超高真空兼容,低至10-10mbar;

◆ 量子效率高达98%;

◆ 18 bit模数转换

◆ 双读出头




型号参数:


ALEX 1024 256 ALEX 2048 512
芯片类型FI, FI DD, BIUV1,BI DDFI, BI, BI UV1
像素规格(标称)1024 × 256 2048 × 512
像素尺寸26 μm × 26 μm13.5 μm × 13.5 μm
满井容量500 ke¯ / 700 ke¯ (DD) 100 keV
读出噪声典型值(e-)
@ 50 kHz
@ 1 MHz
FI
4.2
6.0
5.7
BI
12.0
13.1
12.3
DD
22.0
23.0
 22.5
FI
3.5
7.2
11.3
暗电流(-100°C eˉ/pixel/s) 0.0004 e¯, 0.005 e¯(DD)0.00025 e¯
可调增益0.3 counts/e¯ (low noise mode) 0.4 counts/e¯ (high capacity)
1.2 counts/e¯ (low noise)
芯片等级Grade 0 or grade 1 (标准) 


·  极紫外光刻 

·  软 X 射线光谱 

·  等离子体发射光谱 

·  高次谐波(HHG光)光谱

·  X 射线近边吸收精细结构光谱 

·  共振非弹性 X 射线散射

北京众星联恒科技有限公司GE_ALEXs datasheet 2020.7.16.pdf


文献:

1.  P. Wachulak, M. Duda, A. Bartnik, A. Sarzyński, Ł. Węgrzyński and H. Fiedorowicz, 2-D elemental mapping of an extreme ultraviolet-irradiated PET with a compact near edge X-ray fine structure spectromicroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy, Volume 145, July 2018, Pages 107-114

2.  P. Wachulak, A. Bartnik and H. Fiedorowicz, Optical coherence tomography (OCT) with 2 nm axial resolution using a compact laser plasma soft X-ray source, Nature Scientific Reports, volume 8, Article number: 8494 (2018)

3.  P. Wachulak, M. Duda, A. Bartnik, A. Sarzyński, Ł. Węgrzyński, M. Nowak, A. Jancarek and H. Fiedorowicz, Compact system for near edge X-ray fine structure (NEXAFS) spectroscopy using a laser-plasma light source, Opt. Express 26, 8260-8274 (2018)

4.  A. Jonas, T. Meurer, B. Kanngießer and I. Mantouvalou, Reflection zone plates as highly resolving broadband optics for soft X-ray laboratory spectrometers, Review of Scientific Instruments 89, 026108 (2018)

5.  T. Pflug, J. Wang, M. Olbrich et al., Case study on the dynamics of ultrafast laser heating and ablation of gold thin films by ultrafast pump-probe reflectometry and ellipsometry, Appl. Phys. A (2018) 124: 116

6.  C. Buerhop, S. Wirsching, A. Bemm et al. Evolution of cell cracks in PV modules under field and laboratory conditions. Prog Photovolt Res Appl. 2018;26:261–272

7.  H. Stiel, J. Braenzel, A. Dehlinger, R. Jung, A. Luebcke, M. Regehly, S. Ritter, J. Tuemmler, M. Schnuerer and C. Seim, Soft x-ray nanoscale imaging using highly brilliant laboratory sources and new detector concepts, Proc. SPIE 10243, X-ray Lasers and Coherent X-ray Sources: Development and Applications, 1024309 (17 May 2017)

8.  M. F. Nawaz, M. Nevrkla, A. Jancarek, A. Torrisi, T. Parkman, J. Turnova, L. Stolcova, M. Vrbova, J. Limpouch, L. Pina and P. Wachulak, Table-top water-window soft X-ray microscope using a Z-pinching capillary discharge source, JINST, 2016, Vol. 11 PO7002

9.  I. Mantouvalou, K. Witte, W. Martyanov, A. Jonas, D. Grötzsch, C. Streeck, H. Löchel, I. Rudolph, A. Erko, H. Stiel and B. Kanngießer, Single shot near edge x-ray absorption fine structure spectroscopy in the laboratory, Appl. Phys. Lett. 108, 201106 (2016)

10.  S. Fazinić, I. Božičević Mihalić, T. Tadić, D. Cosic, M. Jakšić, D. Mudronja, Wavelength dispersive µPIXE setup for the ion microprobe, Nucl. Instr. Meth. Phys. Res. Sec. B, 2015, Vol. 363, pages 61-65   

11.  A. Hafner, L. Anklamm, A. Firsov, A. Firsov, H. Löchel, A. Sokolov, R. Gubzhokov, and A. Erko, Reflection zone plate wavelength-dispersive spectrometer for ultra-light elements measurements, Opt. Express, 2015, Vol. 23, No. 23:29476-29483

12.  P. W. Wachulak, A. Torrisi, A. Bartnik, D. Adjei, J. Kostecki, L. Wegrzynski, R. Jarocki, M. Szczurek, H. Fiedorowicz, Desktop water window microscope using a double‑stream gas puff target source, Applied Physics B, 2015, 118:573–578

13.  I. Mantouvalou, K. Witte, D. Grötzsch, M. Neitzel, S. Günther, J. Baumann, R. Jung, H. Stiehl, B. Kanngießer, W. Sandner, High average power, highly brilliant laser-produced laser plasma source for soft X-ray spectroscopy, Review of Scientific Instruments, Vol. 86, Issue 3, 2015 

14.  T. Krähling, A. Michels,S. Geisler, S. Florek, J. Franzke, Investigations into Modeling and Further Estimation of Detection Limits of the Liquid Electrode Dielectric Barrier Discharge, Analytical Chemistry, 2014, 86(12), 5822-8


首页
产品
新闻
联系